
Web Application for Aqualab Sensor Monitoring and Analysis

System Design Document

Prepared by: Gregory Thompson - gthompson2022@my.fit.edu
Haley Hamilton - hamiltonh2021@my.fit.edu
Ruth Garcia - ruth2021@my.fit.edu

Project Advisor: Dr. Slhoub - kslhoub@fit.edu
Project Client: Dr.Turingan

Version: 0.2
Date Created: 09/22/2024

mailto:gthompson2022@my.fit.edu
mailto:hamiltonh2021@my.fit.edu
mailto:ruth2021@my.fit.edu
mailto:kslhoub@fit.edu

Table of contents
1 Introduction……………………………………………. 1
1.1 Purpose …………………………………………..…… 1
1.2 Scope ...………………………………………..……… 1
1.3 Objective .…………………………..………………… 1
1.4 Key Interactions .…….…………………….…………. 1
2 System Architecture…………………………………… 2
2.1 UML Class Diagram (Data Collector and Display) ……2
2.2 UML Class Diagram (Data Analysis) ………………… 4
3 User Interface Design………………………………….. 5
3.1 Details ………………………………………………… 5
3.2 Home Page ……………………………………………. 6
3.3 Analysis Tool..………………………………………… 8
3.4 Login Page ……………………………………………. 8
3.5 Settings ………………………………………………... 9
3.6 User Page ………………...……………………………. 9
4. Database Design……………………………………….. 10
4.1 Entity Relationship Diagram ..………………………… 10
4.2 User Collection ..………………………………………. 10
4.3 User Preferences Collection ……………………………10
4.4 Backup Settings Collection …………………………….11
4.5 Sensor Collection ……………………………………....11
4.6 Measurements Collection ...…………………………….11

Page 1

1. Introduction
1.1 Purpose

The purpose of this project is to develop a system that reads and displays data for use in
Dr. Turingan’s lab research. The product allows him and his lab team to connect their laboratory
sensors/apparatuses to a system and view the data remotely and in real time as well as give alerts
when measurements are outside of desired ranges. This document aims to clearly and concretely
describe the system design of this project.
1.2 Scope

The scope of this product is to develop a web application that will connect to and read in
data from sensors and display it to allow the client to view the data and analyze it. This
capability gives the client a centralized system that automatically reads and records data from
different sensors, alerts them when sensor measurements are not in the expected range, and gives
them a versatile tool to compare and analyze the data. By implementing this system, the client
will streamline their research, making the process more efficient and reducing the likelihood of
errors.
1.3 Objective

The code will operate in two distinct programs. The data collection program will be able
to simultaneously monitor and record the data from any number (under 255) of sensors being
used by Dr. Turingan and his lab team (henceforth the lab team). The lab team will be able to
view the current sensor values, access and analyze previous sensor values, and be notified via
email and sms if sensor values exceed acceptable ranges. The lab team will be able to access the
data and perform specific tasks remotely using a JavaScript web server. Data analysis will be
done using a separate data analysis program designed to lab team specifications.
1.4 Key Interactions

Sensors will connect to the central computer through a variety of sensor-specific methods
including but not limited to USB and Ethernet. The data from these sensors will be stored in a
database on the central computer’s drive. The software will use libraries to enable the sending of
sms and email messages to the lab team as needed. All data, accessed locally or remotely, shall
be displayed on a graphical user interface.

Page 2

2. System Architecture
2.1 UML Class Diagram (Data Collector and Display)

Class Details:
● Data Collection: This is the collection application’s entry point. The settings,

user data, and other core features will operate from this class. It is also responsible
for verifying that data from sensor APIs is in acceptable range. This class will
create threads for the sensor APIs to run on, collect data from the sensor APIs,
and send that data to the database interface. If the data is out of acceptable range,
this class will call the notifier class to handle SMS or email as necessary.

● Sensor APIs: These classes will be tailored to specific sensor types and
communicate their data to the data collection class. These will each monitor
sensor data on their own thread to allow near-simultaneous execution. The data
collection class will call the get_current_value method to receive the most recent
reading.

● Notifier: The notifier class’ role is to send SMS and email messages to users.
This will happen once during setup to confirm information is entered correctly,
and anytime the data collection class decides data is out of range. The Sinch API
will be used to send SMS and the Python SMTP and Email libraries to send
emails.

● GUI: The GUI class is responsible for managing the graphical user interface. It
will display data gathered from both the data collection class (such as settings or

Page 3

out-of-range notifications) and the database interface class (Past sensor readings).
The GUI will transmit user inputs to both of those classes as necessary. The Plotly
and Dash libraries will be used to display graphs and UI elements respectively.

● Database Interface: The database interface shall maintain the database, adding,
removing, or modifying data as determined by the other classes.

● Exporter: The exporter's role is to allow the user to transform their data into a
CSV file. This is to make it easier for the data to be used by other common
analysis programs such as Excel. The Exporter class will also allow data to be
deleted from the database after it has been exported to support drive space
management.

Page 4

2.2 UML Class Diagram (Data Analysis)

Class Details:
● Data Analysis: This is the analysis application’s entry point. This class will store

important relations as determined by the lab team as well as support the addition
of new relations anytime during operation. Data necessary for the calculating of
these relations will be collected from the database interface. This class will then
calculate the relations and pass the necessary results to the GUI class for display
to the user.

Page 5

● GUI: This application's GUI class will be responsible for displaying important
relations to the user. The user will be able to select known relationships or create
new ones, which will then be displayed on the analysis user interface.

● Database Interface: This application’s database interface will only support the
retrieval of data, not removal or modification. Queries will be made by the data
analysis class and translated by this interface. Data will then be retrieved from the
database and passed back to data analysis.

2.3 High-Level Architecture

Sensors connect to the data collection application through sensor APIs. Data is stored and
retrieved from the database through an API. Necessary information passes to the GUI which
displays on the host device or remotely. The data analysis application reads from the same
database, processes analysis internally, and displays similarly to collection.

3. User Interface Design

3.1 Details
The user interface for the data collection will be organized by a hamburger menu. On

initial startup, it will show a setup screen for connecting to new sensors. Once the experiment is
set up, the home screen will show a general graph of all sensor data. Tabs in the menu will
include a tab for viewing specific sensor data, a tab for exporting data in specific ranges, and a
settings tab. The specific sensor data tab will display an initially blank graph with buttons to add
and modify specific data from sensors. The Export tab will display various options for what data
the user wants to be exported. The settings tab will display a list of settings determined by user
permissions. These settings include user management, contact preferences, and drive space
management settings.

Page 6

3.2 Home Page

3.2.1: Sample homepage, displays all data and tabs for specific data.

3.2.2: Homepage (background), with hamburger menu extended on the left.

3.2.3: An individual view of an experiment tank with each sensor shown in detail.

Page 7

3.2.4: A mockup of the sensor configuration GUI.

Page 8

3.3 Analysis Tool
Sample analysis tool, shows potential comparison techniques for data.

3.4 Login Page
Sample Login Page, Email as user id, password will be dotted in complete version..

Page 9

3.5 Settings
Sample Settings page, ability to select specific tank settings as well as full system

settings.

3.6 User Page
Admin user creation page, Allows administrator to create and set roles for a new user. All

users will be made directly by the admin.

Page 10

4. Database Design

4.1 Entity Relationship Diagram

4.2 User Collection
4.2.1 User Records

● UserID (Primary Key): A unique identifier for each user.
● FirstName: The user’s first name.
● LastName: The user’s last name.
● EmailAddress: The user’s Florida Tech email address.
● Password: The user’s password.
● Role: The user’s role.

4.2.2 User Description
This collection is used to store all the user’s information and differentiate between

the users. The email is used as the username and with the password is used to validate
users and allow them access to the application. The role specifies the role of the user and
what application features they are allowed to access.

4.3 User Preferences Collection
4.3.1 User Preferences Records

● PreferencesID (Primary Key): A unique identifier for each user’s preferences.
● UserID (Foreign Key): Linked to the User Collection.
● EmailNotifs: Whether the user wants email notifications or not.
● TextNotifs: Whether the user wants text notifications or not.
● PhoneNumber: The user’s phone number (if they want text notifications).

Page 11

4.3.2 User Preferences Description
This collection is used to store the user’s notification preferences and whether

they would like to receive email or/and text notifications, and if they would like to
receive text notifications, the system inputs their phone number.

4.4 Backup Settings Collection
4.4.1 Backup Settings Records

● BackupFrequency: The frequency of which data is backed up to the cloud.
● LastBackup: The date of the last time data was backed up to the cloud.

4.4.2 Backup Settings Description
This collection is used to store data about the whole system, specifically how

often the system is set to back up data to the cloud and the last date the system performed
a cloud backup.

4.5 Sensor Collection
4.5.1 Sensor Records

● SensorID (Primary Key): A unique identifier for each sensor.
● SensorType: The type of sensor: water quality, air quality, or pressure.
● Communication: The communication data needed for the sensor to connect to the

sensor.
● ReadFrequency: The frequency of which data is read from the sensor.
● DataRange: The desired range/value of the sensor measurements.

4.5.2 Sensor Description
This collection stores data about the sensors in use, including their unique

identifier, the type of sensor, and the data needed to communicate with them (e.g. a COM
port number). This field also includes user customizable fields such as the frequency at
which data is read from the sensor and the desired range or value of the measurements
from the sensor.

4.6 Measurements Collection
4.6.1 Measurements Records

● MeasurementID (Primary Key): A unique identifier for each measurement.
● SensorID (Foreign Key): Linked to the Sensor Collection.
● Readings: The measurements and readings from the sensor.

4.6.2 Measurements Description
This collection stores all the measurements from the sensor. It includes the unique

identifier for each measurement, the unique identifier of the sensor it is reading from, and
all the data.

